Featured Post

Holobionts: a new Paradigm to Understand the Role of Humankind in the Ecosystem

You are a holobiont, I am a holobiont, we are all holobionts. "Holobiont" means, literally, "whole living creature." It ...

Showing posts with label naked apes. Show all posts
Showing posts with label naked apes. Show all posts

Saturday, August 12, 2023

Why Naked Apes have Small Mouths. Explained by Meuianga Mera, Chief Scientist of the Reptilian Starfleet





-- Egad.... Meuianga. What would that be?
-- You are teasing us, Meuianga. What is this ugly mess?
-- Looks disgusting. 
-- Aie... disgusting, indeed. Is it something vomited by a Nawipkeyzätx?

Wait, wait, cadets. Don't jump to conclusions too fast. If I am showing you this thing, it is because it is part of your training. And let me tell you that the Apes call it a pizza, and they eat it. It is made with ground vegetable seeds, some meat and other vegetable matter

-- Do they?
-- Really, they eat it?
-- Gosh.... unbelievable.
-- But how can they........?

Everything has an explanation, cadets. And not every species in the galaxy has the same uses we have. I know that we all love meat bitten from freshly killed prey, but, my dear pupils, let me ask you a question. How often could you indulge in killing a Leetlapxkxay and eating it raw, recently?

-- Ah, well, Meuianga, that's true
-- We are in a spaceship. Not easy to find a Leetlapxkxay inside
-- And the trip was long. Even a good reptilian hunter has to come to terms with reality. 

Yes. So we all are used to our super-meta rations. They are good. They give us strength. Though, I must say, not so tasty. But that's another matter. Today, I want to explain to you how the naked apes of planet Earth deal with food. And it is a matter that's linked with other features of this species. You remember that in our previous lesson, I was telling you about the function of this species fleshy excrescences that they call "lips." But another interesting feature of their mouth is how small it is. Let me show you a picture of one of them. Incidentally, even though she is an ape, she is rather smart. She is, actually, one of their best scientists. Maybe, one day I'll have her beamed up to our spaceship, so you can meet her. Chatting with these creatures can be quite entertaining. But here is the picture I mentioned,


-- Uh? Is she really one of those naked apes?
-- She looks like an insect!
-- Weird. With those large eyes!
-- She doesn't even have pupils! 

No, no, cadets. She is not an insect. She is one of the apes we are studying. She is just wearing over her biological eyes an implement that they call "glasses" -- it is another kind of secondary sexual signal for them, but we'll go into that in a later lesson. I am showing this image to you because this young ape shows rather clearly the feature I wanted to discuss today: the small mouth. Indeed it is small. Compare it with your mouth, and you can see that. I can also show you a comparison with the mouth of another ape species of this planet. It is a creature they call "Chimp" and that of a naked ape. They are both primates, closely related to each other in genetic terms. But the mouth of the naked ape is much smaller.



And you see that the mouth of the naked ape is indeed much smaller than that of other species of ape. Now, the question is why. Can you guess? 

-- I have an idea, Meuianga. Does it depend on what they eat? 

Good observations, cadet Hämi Te Yuepxoe 'Ipxpaä'itans. And, indeed, it is a possible explanation. I can tell you that my first impression when I examined the mouth of these creatures was that they, indeed, suck blood. Several species on this planet survive on the blood of other creatures. The naked apes call them "vampires," and we use this term, too. 

-- Is it true, Meuianga? Do they really suck the blood of other creatures?
-- Are they all vampires?

No, cadets, not really. Even though, occasionally, they do, but they don't survive on that. Vampires are small creatures that eat the blood of much larger ones -- they can do that because they are so small that they don't kill their target. On planet Earth, the largest vampire species we could identify are called "bats" by ape scientists. They are truly small. About a hundredth of the weight of a naked ape. To keep the proportion, these apes would need to feed on creatures so large that they couldn't exist on this planet. Gravity would crush them!

-- Ah, good, Meuianga. In a sense, we are reassured.
-- These apes are interesting creatures. But vampires.... well, it would truly disgusting. 
-- And worrisome, too. 

Don't worry, cadets, these apes are not going to suck your blood. To be sure, they have some strange stories about creatures of their size doing exactly that. But I never could verify these stories, so I'll just assume that they are part of that virtual world that apes call "legends." In any case, the reason for the small mouth is perhaps even more interesting than if they were vampires. 

-- You are making us curious, Meuianga
-- Tell us the reason! 

Well, cadets, there are two possible reasons, one of which I don't think it is completely satisfactory, but it is worth examining nevertheless. And it has to do with the object I showed you at the beginning of this class. 

-- Ah.... the thing you called "pizza"?
-- And you say they eat it?

Yes. the story is that they eat pre-digested food. 

-- ........?
-- Do they......?
-- Really?
-- Sound truly awful. 
-- Yecchh....
-- But what does that mean, "pre-digested"?

Ah... simple, cadets, simple. You know that digestion is a process that breaks down the components of food into its basic components. It is done by several enzymes secreted by the body. Now, something similar can be done by heating the food, a process that the apes call "cooking."

-- Cooking?
-- We never heard of anything like that.
-- What would that be?

It is a form of pre-digestion. For instance, it denaturates proteins into more easily absorbable forms, and it also breaks down the cell walls to free nutrients, and much more. Cadets, let me tell you that these apes are quite sophisticated in their idea of cooking. And it is an interesting, very interesting cultural pattern. Those pizzas are, actually, very good. 

.. Er... Meuianga, what does that mean?
-- You ate ape-made pre-digested food?
-- Is that true?

Cadets, a Reptilian scientist is not afraid of personally testing the subjects she studies.

-- Yes, Meuianga, but pre-digested food...
-- Aw... yes. It sounds, it sounds like....
-- Gross.... it sounds gross.

I know, cadets, it sounds disgusting. But it is part of your training. 

-- Eh...? Do you mean we'll have to....?
-- Really?
-- Did you.... did you eat this thing? This "pizza"?
-- Is this a test we have to pass?

Not now, cadets, not now. But as you progress in your training, you'll have several tests to pass. And you might as well like pizza....Or maybe you can start with the kind of food they call Sushi. It is raw fish.

-- Ah... it sounds better
-- A good reptilian warrior eats raw fish.
-- Of course she does. 

Yes, and raw fish comes with a dose of aromatized ethanol called Sake, which has the purpose of altering a little your brain's synaptic activity. You may try that too. 

-- Meuianga, please, do not shock us so much.
-- We'll do that, if it is part of our training, but....
-- Meuianga.... please...

Cadets, I am sure you'll do your best. But let me go back to what we were discussing. We were examining the small mouth of the naked apes, and this idea of the pre-digested, or "cooked" food may explain it. If cooking makes food denser in terms of its nutritional content, then these creatures don't don't need to swallow large amounts and can have a smaller mouth. Doesn't that makes sense to you?

-- Maybe yes, Meuianga.
-- At least the way you stated it. 
-- But how does pre-digestion increase the nutrition content of food? 

Ah... this is a good observation, Cadet Kewpxzi'ì Te Lìpuaynin Stìuyi'itan. Cooking is mainly a help to make food more easily digestible, but it doesn't increase so much its nutritional value. But it is a reasonable explanation because it also makes the food softer, and so you don't need a big mouth to chew it. So, it is possible. Actually, it was proposed first by an ape scientist named Richard Wrangham some years ago. Here is an image of the "book" where he proposed it. Notice the funny thing on the head of the chimp - it is what they call a "hat" -- we'll discuss that later on.  



Wrangham is another smart ape; I met him a few times. He tried to convince me that his explanation is the right one, but I am not sure. Because, really, it seems not sufficient to me. Also, I think there is a much better explanation. But we have to go in-depth into the way these apes behave and this we'll see in another lesson. So, thanks for your attention, dear cadets, and have a nice relaxation with your daily super-meta. Or, if you like to try one of those things.... pizzas.... I can beam up one for you.

- Ah...
- Well.
- Maybe.
- And, after all, you are right that those super-meta rations are not so tasty. 
- Shouldn't we.... ?
- Why not?
- Meuianga.... we trust you!

 


h/t Ilaria Perissi

Sunday, March 26, 2023

Of Mammophants and Holobionts





A question for you, space cadets, why did Mammoths go extinct, while elephants didn't? You have to detect a subtle clue that has to do with how the naked apes hunted them. You should be able to see it in this image. (Meuianga Mera, Chief Scientific Officer of the Reptilian Starfleet)



From "The Embryo Project"

Revive & Restore’s Woolly Mammoth Revival Project

By: Risa Aria Schnebly
Published: 2021-01-19
Keywords: mammophant, de-extinction, gene modification

Gratefully reproduced on "The Proud Holobionts" under this text's Creative Commons License 

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of re-engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways. In order to de-extinct the woolly mammoth, researchers theorize that they can manipulate the genome of the Asian elephant, which is the mammoth’s closest living evolutionary relative, to make it resemble the genome of the extinct woolly mammoth. While their goal is to create a new elephant-mammoth hybrid species, or a mammophant, that looks and functions like the extinct woolly mammoth, critics have suggested researchers involved in the project have misled and exaggerated the process. As of 2021, researchers have not yet succeeded in their efforts to de-extinct the woolly mammoth, but have expressed that it may become a reality within a decade.

Researchers broadly define de-extinction as a method for reintroducing extinct species. However, the methods of de-extinction that researchers participating in the Woolly Mammoth Revival Project pursue would not lead to a perfect biological replica of a mammoth. The only chance to precisely recreate an extinct animal would be through cloning, a process of creating a genetically identical organism using the DNA of a host. DNA is the genetic information found in every living organism that carries the instructions an organism needs to develop, live, and reproduce. However, researchers cannot clone mammoths because cloning requires living cells, whereas other genome editing methods do not. Since one of the last species of mammoths went extinct around 4000 years ago, scientists are unable to acquire any living cells needed to clone the animal itself.

Because cloning is not an option in the case of the woolly mammoth, Revive & Restore researchers are attempting to use genome editing and engineering to make mammoth-like species instead of perfect replications of mammoths. Genome engineering is a technique that enables researchers to make changes to an organism’s genome, which is its set of DNA. There are many technologies that equip scientists to edit an organism’s genome and change how it will develop and function. Researchers from the Woolly Mammoth Revival Project are experimenting with CRISPR-cas9, a genome editing tool derived from bacteria that involves cutting out specific sequences of DNA and replacing them with other sequences. In the case of the de-extinction of the woolly mammoth, scientists would edit the Asian elephant genome to make it more similar to the genome from the woolly mammoth.

As the woolly mammoth’s closest living relative, the Asian elephant is ninety-nine percent genetically identical to the mammoth without any genetic editing interventions. Genetic engineers can use CRISPR-cas9 to cut out and remove precise sequences of elephant DNA and replace them with the DNA sequences that make up specific genes in the woolly mammoth’s genome. The genes they add into the elephant genome code for features that can make an elephant more mammoth-like, such as promoting the development of thicker layers of fat and longer hair. Researchers will not have created a biological woolly mammoth once an organism with that genome develops. However, it would theoretically be a mammoth-like creature which some have researchers have called a mammophant. They speculate the organism will be able to survive in the Arctic, where woolly mammoths once lived to promote biodiversity in that area. Researchers at Revive & Restore expect the introduction of their hybrid species can help prevent the melting of permafrost, the thick layer of soil and bedrock that stays frozen year-round in the Arctic, thereby preventing the release of greenhouse gases.

Stewart Brand and Ryan Phelan founded Revive & Restore in 2012, launching its inception with a project designed to de-extinct the passenger pigeon, a species of bird that went extinct in the early twentieth century due to overhunting. The extinction of the passenger pigeon was one of the catalysts for the US conservation movement because it demonstrated how human action alone could entirely eradicate a species that was once extremely abundant. For Revive & Restore, the passenger pigeon was a model candidate for de-extinction not only because of its fame within the conservation movement, but also because the passenger pigeon was an important species in the forests of the eastern US. Its foraging and migration patterns helped to create areas within forests that allowed other species to populate.

Revive & Restore’s next species of focus was the woolly mammoth, which was an important species in the Arctic, where the mammoth would trample plants and trees which would enable the arctic permafrost to remain frozen by exposing it the cold air. In 2012, Brand and Phelan hosted a meeting of international scientists interested in the project to discuss the feasibility of reintroducing the woolly mammoth, or a species very similar. Two of the project’s key figures, scientists George Church and Sergey Zimov, met at that meeting and discussed its practicality. Church, a professor of genetics at Harvard Medical School in Boston, Massachusetts, had the scientific expertise needed to engineer a mammophant. Zimov, a researcher of ecology from Russia, could provide a place the mammophants could live, and suggested the potential role of the mammophant in combatting global warming.

In 1996, Zimov founded Pleistocene Park, a fifty square mile wide nature reserve in the remote Siberian Arctic where mammophants may eventually roam. Some of the goals of Pleistocene Park include restoring the area’s ecosystem, protect the permafrost, and prevent further global warming. Zimov had already reintroduced large grazing animals into the park to replace the wildlife that existed in that region in the late Pleistocene era, which was a span in Earth’s history that ended about 12,000 years ago. Zimov believes that reintroducing large species like mammophants could mitigate the effects of global warming in the Arctic by helping to prevent the thawing of arctic permafrost.

During the late Pleistocene era, mammoths and other large animals trampled and scraped snow away from the ground, exposing the permafrost to cold winter air that could penetrate the ground and keep the deep layers of the permafrost frozen. Without the activity from large animals, there is nothing to disturb the snow that covers the ground, which means the colder air cannot reach and freeze the permafrost during the winter. That means that the permafrost can melt more easily upon the arrival of seasonal warm weather, especially as global temperatures rise due to global warming. When arctic permafrost thaws, it can release greenhouse gases that have been trapped within it for centuries. Those greenhouse gases can trap heat inside the earth’s atmosphere and researchers predict its impact will be greater than any other factor contributing to global warming. However, according to Zimov, the reintroduction of large grazing animals into Pleistocene Park has already seemed to help keep deeper layers of the permafrost frozen. After Church visited Pleistocene Park himself in 2015, Church and Zimov launched the Woolly Mammoth Revival Project with Revive & Restore.

Before genetic engineers can begin to add mammoth genes into the elephant genome, they first have to identify which genes are the most critically involved in the features they hope to emulate. The mammoth genome was first sequenced in 2008 by a team of biologists at Penn State University in State College, Pennsylvania. The team used samples of mammoth hair found in two mammoth specimens buried in the Siberian permafrost, one that was 20,000 years old and another that was 60,000 years old. Though most DNA specimens that old would be too degraded for scientists to sequence, the mammoths had been frozen and preserved in the Siberian permafrost. However, the mammoth’s DNA sequence does not specifically communicate the associated genes. To determine those genes, researchers have tested and compared the sequences of the woolly mammoth to those of the Asian elephant.

Scientists can reprogram the cells they edit to become different kinds of cells in the body, such as red blood cells, hair cells, or tissue cells. By pushing the edited reprogrammed cells to develop, the team can then see what the outcome of the genome edits they make will be. For example, if the researchers splice in a gene meant to give the elephant longer, mammoth-like hair, they can then push the group of cells they edited to develop into actual hair cells through genetic engineering without ever having to create an actual organism. They can then see what the creature’s hair will actually look and feel like, how long it will grow, and how thick it will be, among many other things. Then researchers can see whether the edits they made will really make the elephant more cold-resistant or not. After testing to confirm that the gene edits have the outcome the researchers wanted, the researchers can then combine all their successful edits into one genome sequence that they will use to create an animal.

As of 2020, Church continued to lead one of the teams working to identify the important genes within the woolly mammoth genome with the use of CRISPR-cas9. One of the most recent updates from Church’s lab in 2017 announced that they had successfully located forty-five genes that code for traits to make the hybrid more resistant to cold weather. Though there are several thousand genetic differences between the genome of the mammoth and Asian elephant, Church has hypothesized in some interviews that his team may only need to splice in fifty of the mammoth genes to create a mammophant capable of surviving in the Arctic.

Out of concern for animal welfare, Church and his team have stated they plan to avoid forcing Asian elephants to act as a surrogate for the mammophant by growing the mammophant embryo in an artificial womb outside of the body instead. Additionally, the team can test the physical effects of changing and combining the genomes without having to produce an actual animal. Asian elephants are an endangered species as of 2020, so scientists have used genome editing technologies for early investigations into proving the feasibility of the concept. Additionally, critics such as Matthew Cobb, a professor of zoology at the University of Manchester in Manchester, England, doubt that scientists can achieve the capability to produce a functional artificial womb within the next decade. Cobb explained that an artificial womb would deprive a fetus from many important pre-birth interactions with its gestational carrier that help the fetus to properly develop. However, Church and his lab have conducted early experiments attempting to grow mouse embryos ex vivo, or out of a uterus, rather than in vivo, meaning in a uterus, and have suggested the technology will become possible within the next decade.

Even if the technology may soon be feasible, many critics question whether we should be trying to de-extinct the mammoth at all. For example, David Ehrenfeld, a professor of biology at Rutgers University in Camden, New Jersey, has raised concerns that the mammophants may not be able to survive in the Arctic because they are genetically different from the extinct mammoths and will not be able to learn survival skills without a herd. He suggests those factors could also lead the mammophants to behave unpredictably in their environment and possibly even cause more destruction than help. To avoid that problem, Revive & Restore has stated plans to raise eventual mammophants with captive Asian elephant families in zoos who may teach them survival and herding behaviors so the mammophants can one day form herds of their own.

Additionally, many ethicists have expressed concern over de-extinction being an immoral endeavor. De-extinction, if successful, may eventually undermine the conservation movement by making extinction seem like less of a problem. If extinction suddenly seems reversible, the public may feel less responsible for behaviors and actions that contribute global warming and biodiversity loss. For example, Ben Minteer, a professor of environmental ethics at Arizona State University in Tempe, Arizona, has noted that the premise of de-extinction may teach people that technology alone can reinforce the idea that human will remain unaccountable for changing their behaviors to prevent such damage from occurring in the first place. Other conservationists like Stuart Pimm, a professor of conservation ecology at Duke University in Durham, North Carolina, worry that the time, money, and effort dedicated to de-extinction efforts like the Woolly Mammoth Revival Project could divert important funds dedicated to protecting the many endangered species and ecosystems still around today. Additionally, journalists have suggested the notion of the topic entirely became manipulated with aggrandized and sensationalist headlines without regard to the restrictions and hindrances scientists will need to overcome before making it a reality.

As of 2021, the Woolly Mammoth Revival Project was still in the process of revising the elephant genome. Whether or not the project is ultimately successful, the scientific and public discussion on de-extinction has prompted questions that consider how far humans should be allowed to interfere with nature. Although humans may be responsible for behaviors that have led to global warming, the risks and uncertainty surrounding de-extinction may outweigh the benefits of correcting such mistakes.

SourcesAndersen, Ross. “Welcome to Pleistocene Park.” The Atlantic, 2017. https://www.theatlantic.com/magazine/archive/2017/04/pleistocene-park/517779/ (Accessed July 26, 2020).
Bennett, Joseph, Richard Maloney, Tammy Steeves, James Brazill-Boast, Hugh Possingham, and Philip Seddon. “Spending Limited Resources on De-Extinction Could Lead to Net Biodiversity Loss.” Nature Ecology & Evolution 1 (2017): 53. https://www.researchgate.net/publication/314162210_Spending_limited_resources_on_de-extinction_could_lead_to_net_biodiversity_loss (Accessed July 26, 2020).
Campagna, Claudio, Daniel Guevara, and Bernard Le Boeuf. “De-Scenting Extinction: The Promise of De-Extinction May Hasten Continuing Extinctions.” Hastings Center Report 47 (2017): 48–53. https://onlinelibrary.wiley.com/doi/pdf/10.1002/hast.752 (Accessed July 26, 2020).
Clayton, Susan. “Preserving the Things We Value.” Center for Humans & Nature, 2015. https://www.humansandnature.org/conservation-extinction-susan-clayton (Accessed July 26, 2020).
Devlin, Hannah. “Woolly Mammoth on Verge of Resurrection, Scientists Reveal.” The Guardian, 2017. https://www.theguardian.com/science/2017/feb/16/woolly-mammoth-resurrection-scientists (Accessed July 26, 2020).
Ehrenfeld, David. “Resurrected Mammoths and Dodos? Don’t Count On It.” The Guardian, 2013. https://www.theguardian.com/commentisfree/2013/mar/23/de-extinction-efforts-are-waste-of-time-money (Accessed July 26, 2020).
Hawks, John. “How Mammoth Cloning Became Fake News: George Church, Artificial Wombs, Elephant Embryos, and a Gullible, Science Media.” Medium Science, 2017. https://medium.com/@johnhawks/how-mammoth-cloning-became-fake-news-1e3a80e54d42 (Accessed July 26, 2020).
Hysolli, Eriona. “An American-Russian Collaboration to Repopulate Siberia with Woolly Mammoths… Or Something Similar.” Medium, 2018. https://medium.com/@eriona.hysolli/an-american-russian-collaboration-to-repopulate-siberia-with-woolly-mammoths-or-something-similar-9cbac4e985cb (Accessed July 26, 2020).
Minteer, Ben, The Fall of the Wild: Extinction, De-Extinction, and the Ethics of Conservation. New York, New York: Columbia University Press, 2019.
Nijhuis, Michelle. “Don’t Think of a Mammophant.” Last Word on Nothing, 2017. https://www.lastwordonnothing.com/2017/03/07/dont-think-of-a-mammophant/ (Accessed July 26, 2020).
Novak, Ben Jacob. “De-Extinction.” Genes 9 (2018): 548. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265789/ (Accessed July 26, 2020).
Pelley, Scott. “Siberia’s Pleistocene Park: Bringing back pieces of the Ice Age to combat climate change.” CBS News, 2019. https://www.cbsnews.com/news/siberia-pleistocene-park-bringing-back-pieces-of-the-ice-age-to-combat-climate-change-60-minutes/ (Accessed July 26, 2020).
Penn State University. "Woolly-mammoth Genome Sequenced." ScienceDaily, 2008. www.sciencedaily.com/releases/2008/11/081119140712.htm (Accessed July 26, 2020).
Pimm, Stuart. “Opinion: The Case Against Species Revival.” National Geographic News, 2013. https://www.nationalgeographic.com/news/2013/3/130312--deextinction-conservation-animals-science-extinction-biodiversity-habitat-environment/ (Accessed July 26, 2020).
Pleistocene Park. “The Park.” Pleistocene Park Foundation. https://pleistocenepark.org/park/ (Accessed July 26, 2020).
Riederer, Rachel. “The Wooly Mammoth Lumbers Back Into View.” The New Yorker, 2018. https://www.newyorker.com/science/elements/the-wooly-mammoth-lumbers-back-into-view (Accessed July 26, 2020).
Shapiro, Beth. How to Clone a Mammoth: The Science of De-Extinction. Princeton: Princeton University Press, 2015.
“The Great Passenger Pigeon Project.” Revive & Restore. https://reviverestore.org/about-the-passenger-pigeon/ (Accessed July 26, 2020).
“What We Do.” Revive & Restore. https://reviverestore.org/what-we-do/ (Accessed July 26, 2020).
Wood, Charlie. “We Can Clone a Mammoth: But Should We?” Christian Science Monitor, 2017. https://www.csmonitor.com/Science/2017/0216/We-can-clone-a-woolly-mammoth.-But-should-we (Accessed July 26, 2020).
“Woolly Mammoth Revival.” Revive & Restore. https://reviverestore.org/projects/woolly-mammoth/ (Accessed July 26, 2020).
Yeoman, Barry. “Why the Passenger Pigeon went Extinct.” The Audubon Society, 2014. https://www.audubon.org/magazine/may-june-2014/why-passenger-pigeon-went-extinct (Accessed July 26, 2020).
How to citeSchnebly, Risa Aria, "Revive & Restore’s Woolly Mammoth Revival Project". Embryo Project Encyclopedia (2021-01-19). ISSN: 1940-5030 http://embryo.asu.edu/handle/10776/13209.

Show full item record
PublisherArizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.
Rights

Copyright Arizona Board of Regents Licensed as Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/by-nc-sa/3.0/
Last modified Monday, June 28, 2021 - 04:06
TopicTheories, Technologies, Organizations, Ethics
SubjectExtinction, Biological; Extinction, Species; Genetic Engineering; Genetically Engineered Organisms; Genetically Engineered Animals; Genetically Modified Animals; Cloning, Organism; Mammoths; Woolly Mammoth; Mammuthus primigenius; Mammuthus; Conservation; Animal diversity conservation; Animal conservation; Gene Editing; Bioethics; Life sciences--Moral and ethical aspects; Conceptniversity, 1711 South Rural Road, Tempe Arizona 85287, United States